Nutrient salvaging and metabolism by the intracellular pathogen Legionella pneumophila
نویسندگان
چکیده
The Gram-negative bacterium Legionella pneumophila is ubiquitous in freshwater environments as a free-swimming organism, resident of biofilms, or parasite of protozoa. If the bacterium is aerosolized and inhaled by a susceptible human host, it can infect alveolar macrophages and cause a severe pneumonia known as Legionnaires' disease. A sophisticated cell differentiation program equips L. pneumophila to persist in both extracellular and intracellular niches. During its life cycle, L. pneumophila alternates between at least two distinct forms: a transmissive form equipped to infect host cells and evade lysosomal degradation, and a replicative form that multiplies within a phagosomal compartment that it has retooled to its advantage. The efficient changeover between transmissive and replicative states is fundamental to L. pneumophila's fitness as an intracellular pathogen. The transmission and replication programs of L. pneumophila are governed by a number of metabolic cues that signal whether conditions are favorable for replication or instead trigger escape from a spent host. Several lines of experimental evidence gathered over the past decade establish strong links between metabolism, cellular differentiation, and virulence of L. pneumophila. Herein, we focus on current knowledge of the metabolic components employed by intracellular L. pneumophila for cell differentiation, nutrient salvaging and utilization of host factors. Specifically, we highlight the metabolic cues that are coupled to bacterial differentiation, nutrient acquisition systems, and the strategies utilized by L. pneumophila to exploit host metabolites for intracellular replication.
منابع مشابه
Metabolism of the vacuolar pathogen Legionella and implications for virulence
Legionella pneumophila is a ubiquitous environmental bacterium that thrives in fresh water habitats, either as planktonic form or as part of biofilms. The bacteria also grow intracellularly in free-living protozoa as well as in mammalian alveolar macrophages, thus triggering a potentially fatal pneumonia called "Legionnaires' disease." To establish its intracellular niche termed the "Legionella...
متن کاملMetabolism of myo-Inositol by Legionella pneumophila Promotes Infection of Amoebae and Macrophages.
UNLABELLED Legionella pneumophila is a natural parasite of environmental amoebae and the causative agent of a severe pneumonia termed Legionnaires' disease. The facultative intracellular pathogen employs a bipartite metabolism, where the amino acid serine serves as the major energy supply, while glycerol and glucose are mainly utilized for anabolic processes. The L. pneumophila genome harbors t...
متن کاملControl of Host Cell Phosphorylation by Legionella Pneumophila
Phosphorylation is one of the most frequent modifications in intracellular signaling and is implicated in many processes ranging from transcriptional control to signal transduction in innate immunity. Many pathogens modulate host cell phosphorylation pathways to promote growth and establish an infectious disease. The intracellular pathogen Legionella pneumophila targets and exploits the host ph...
متن کاملThe Different Antibacterial Impact of Silver Nanoparticles Against Legionella pneumophila Compared to Other Microorganisms
Legionella pneumophila is the pathogen responsible for severe pneumonia known as Legionnaires’ disease. Legionella can live under varied stress conditions, especially in cold environments, and is common in many artificial environments. In this study, the antimicrobial activity of biogenic silver nanoparticles, prepared using the culture supernatant of Klebsiella pneumoniae, was evaluated agains...
متن کاملIntracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions.
Conditions were established in which Legionella pneumophila, an intracellular bacterial pathogen, could replicate within the unicellular organism Dictyostelium discoideum. By several criteria, L. pneumophila grew by the same mechanism within D. discoideum as it does in amoebae and macrophages. Bacteria grew within membrane-bound vesicles associated with rough endoplasmic reticulum, and L. pneum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014